CENTURY OF TRENDS PROJECT:

LONG-TERM TRENDS IN ALKALINITY IN LARGE RIVERS OF THE CONTERMINOUS U.S.

Edward (Ted) Stets Valerie J. Kelly Charles G. Crawford

ACKNOWLEDGEMENTS

- USGS NAWQA Century of Trends
- Whitney Broussard
- Thor Smith
- Donna Myers

WHY STUDY ALKALINITY TRENDS?

- Indicative of changes in the watershed.
 - Land use.
 - Weathering rate.
 - Acidification.
- Major component of carbonate equilibria
 - Can affect coastal acidification.
 - Implications for river carbon cycling.
- The underlying causes are not well understood
 - Much more work in small headwaters areas.
 - Large rivers subject to many more processes.

Acid deposition

Acid mine drainage

ACIDIFYING PROCESSES IN WATERSHEDS

Agriculture

Industrial and municipal point sources

METHODS

- Data originated from NWIS, STORET, and individual state assessments.
 - Clarke (1924) Data from first decade of 20th century.
- Water quality data included alkalinity and major ions.
- Used the multiple regression model LOADEST to calculate loads of all constituents.
- Expressed all results as flowweighted concentration (FWC).

TREND ANALYSIS

- Trends were calculated from the mid 20th century to early 21st century.
 - Nominally 1950-2010.
- LOADEST run in three-year segments
 - Concentration-discharge based relationship.
 - Running in segments allowed this to change over time.
- Trends detected using nonparametric Kendall correlation on annual flowweighted concentration.

ALKALINITY INCREASES WERE WIDE-SPREAD.

Alkalinity
CONCENTRATION
increased at
14 of 23
stations
examined.

Eastern Rivers			
Mississippi River Basin			
Western Rivers			

Station	FWC
Connectict	0.28
Delaware	0.62
Schuylkill	0.74
Potomac	0.60
James	0.39
Middle Ohio	0.64
Lower Ohio	0.30
Maumee	-0.04
St Lawrence	0.11
Middle Illinois	0.49
Lower Illinois	0.24
Upper Mississippi	0.46
Missouri	0.42
Middle Mississippi	0.23
Arkansas	0.05
Lower Mississippi	0.32
Brazos	-0.17
Colorado	-0.35
Santa Ana	-0.43
San Joaquin	0.05
Willamette	-0.07

INCREASING FLOW-WEIGHTED CONC. IS WIDE-SPREAD.

WHAT CAUSES ALKALINITY INCREASES?

- Increasing weathering rates.
- Increasing sources of weathering products to streams.
- Decreased alkalinity consumption by acidifying processes.

CATION: ALKALINITY RATIO

Higher: Greater influence of HNO₃ + H₂SO₄ weathering

Lower: Lesser influence of HNO₃ + H₂SO₄ weathering

	Station	Alkalinity	Ca / Alk	[Ca+Mg] / Alk
	Connectict	0.28***	-0.41***	-0.41***
Eastern Rivers	Delaware	0.61***	-0.51***	-0.56***
	Schuylkill	0.74***	-0.68***	-0.74***
	Potomac	0.6***	-0.07	-0.23**
Š	James	0.39***	0.01	0.01
<u> </u>	Altamaha	0.25**	0.35**	0.51**
ter	Escambia	-0.14	0.12	0.05
as	Middle Ohio	0.64***	-0.50***	-0.46***
ш	Lower Ohio	0.3***	-0.36***	-0.30***
	Maumee	-0.04	-0.21*	0.09
	St Lawrence	0.11	-0.47***	-0.40***
	Middle Illinois	0.46***	-0.51***	-0.45***
- c	Lower Illinois	0.48***	-0.25**	-0.11
Mississippi River Basin	Upper Mississippi	0.46**	-0.23*	-0.07
issi Ba	Missouri	0.42***	-0.50***	-0.28***
issi	Middle Mississippi	0.23**	-0.27***	-0.13
Ŗ Ŗ	Arkansas	0.05	-0.51***	-0.48***
	Lower Missisisppi	0.32***	-0.57***	-0.31***
E s	Brazos	-0.17*	-0.12	-0.02
	Colorado	-0.35***	-0.32***	-0.22***
Western Rivers	Santa Ana	-0.43***	-0.09	-0.20*
Ve. Ri	San Joaquin	0.06		0.05
>	Willamette	-0.11	0.37***	0.38***

DECREASING
CATION:
ALKALINITY
RATIO IS
WIDESPREAD

This result is consistent with recovery from acidification.

DELAWARE RIVER: RECOVERY FROM ACIDIFICATION

MISSISSIPPI RIVER AT NEW ORLEANS: MIXED MESSAGES

COMPARISON WITH EARLY 20TH CENTURY DATA

CONCLUSIONS

- Alkalinity increases are widespread.
 - Especially Eastern and Central US
- Decreasing cation alkalinity ratios suggest that recovery from acidification is common.
- Alkalinity in early 21st century is similar to the beginning of the 20st century.
- Heterogeneity is the rule.

CENTURY OF TRENDS PUBLICATIONS (SO FAR)

Stets, E.G., V.J. Kelly, W. Broussard, T. Smith, and C.G. Crawford. (2012). Century-scale perspective on water quality in selected river basins of the conterminous United States. U.S. Geological Survey *Scientific Investigations Report* 2012-5225, 107p.

Stets, E.G., V.J. Kelly, and C.G. Crawford (*In press*). Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification. *Science of the Total Environment*, http://dx.doi.org/10.1016/j.scitotenv.2014.04.054.